Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45.579
Filtrar
1.
Nat Commun ; 15(1): 3015, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589344

RESUMO

Many experimental and computational efforts have sought to understand DNA origami folding, but the time and length scales of this process pose significant challenges. Here, we present a mesoscopic model that uses a switchable force field to capture the behavior of single- and double-stranded DNA motifs and transitions between them, allowing us to simulate the folding of DNA origami up to several kilobases in size. Brownian dynamics simulations of small structures reveal a hierarchical folding process involving zipping into a partially folded precursor followed by crystallization into the final structure. We elucidate the effects of various design choices on folding order and kinetics. Larger structures are found to exhibit heterogeneous staple incorporation kinetics and frequent trapping in metastable states, as opposed to more accessible structures which exhibit first-order kinetics and virtually defect-free folding. This model opens an avenue to better understand and design DNA nanostructures for improved yield and folding performance.


Assuntos
Nanoestruturas , Nanotecnologia , Conformação de Ácido Nucleico , DNA/química , Nanoestruturas/química , Cinética
2.
ACS Appl Mater Interfaces ; 16(14): 17838-17845, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38556984

RESUMO

Changeable substituent groups of organic molecules can provide an opportunity to clarify the antibacterial mechanism of organic molecules by tuning the electron cloud density of their skeleton. However, understanding the antibacterial mechanism of organic molecules is challenging. Herein, we reported a molecular view strategy for clarifying the antibacterial switch mechanism by tuning electron cloud density of cinnamaldehyde molecule skeleton. The cinnamaldehyde and its derivatives were self-assembled into nanosheets with excellent water solubility, respectively. The experimental results show that α-bromocinnamaldehyde (BCA) nanosheets exhibits unprecedented antibacterial activity, but there is no antibacterial activity for α-methylcinnamaldehyde nanosheets. Therefore, the BCA nanosheets and α-methylcinnamaldehyde nanosheets achieve an antibacterial switch. Theoretical calculations further confirmed that the electron-withdrawing substituent of the bromine atom leads to a lower electron cloud density of the aldehyde group than that of the electron-donor substituent of the methyl group at the α-position of the cinnamaldehyde skeleton, which is a key point in elucidating the antimicrobial switch mechanism. The excellent biocompatibility of BCA nanosheets was confirmed by CCK-8. The mouse wound infection model, H&E staining, and the crawling ability of drosophila larvae show that as-prepared BCA nanosheets are safe and promising for wound healing. This study provides a new strategy for the synthesis of low-cost organic nanomaterials with good biocompatibility. It is expected to expand the application of natural organic small molecule materials in antimicrobial agents.


Assuntos
Acroleína/análogos & derivados , Nanoestruturas , Camundongos , Animais , Antibacterianos/farmacologia , Acroleína/farmacologia , Esqueleto
3.
Arch Microbiol ; 206(4): 199, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563993

RESUMO

Wound healing, a critical biological process vital for tissue restoration, has spurred a global market exceeding $15 billion for wound care products and $12 billion for scar treatment. Chronic wounds lead to delayed or impaired wound healing. Natural bioactive compounds, prized for minimal side effects, stand out as promising candidates for effective wound healing. In response, researchers are turning to nanotechnology, employing the encapsulation of these agents into drug delivery carriers. Drug delivery system will play a crucial role in enabling targeted delivery of therapeutic agents to promote tissue regeneration and address underlying issues such as inflammation, infection, and impaired angiogenesis in chronic wound healing. Drug delivery carriers offer distinct advantages, exhibiting a substantial ratio of surface area to volume and altered physical and chemical properties. These carriers facilitate sustained and controlled release, proving particularly advantageous for the extended process of wound healing, that typically comprise a diverse range of components, integrating both natural and synthetic polymers. Additionally, they often incorporate bioactive molecules. Despite their properties, including poor solubility, rapid degradation, and limited bioavailability, various natural bioactive agents face challenges in clinical applications. With a global research, emphasis on harnessing nanomaterial for wound healing application, this research overview engages advancing drug delivery technologies to augment the effectiveness of tissue regeneration using bioactive molecules. Recent progress in drug delivery has poised to enhance the therapeutic efficacy of natural compounds in wound healing applications.


Assuntos
Portadores de Fármacos , Nanoestruturas , Humanos , Sistemas de Liberação de Medicamentos , Cicatrização , Inflamação
4.
Biosens Bioelectron ; 255: 116238, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38579625

RESUMO

Efficient real-time diagnostics and on-demand drug delivery are essential components in modern healthcare, especially for managing chronic diseases. The lack of a rapid and effective sensing and therapeutic system can result in analyte level deviations, leading to severe complications. Minimally invasive microneedle (MN)-based patches integrating nanostructures (NSs) in their volume or on their surface have emerged as a biocompatible technology for delay-free analyte sensing and therapy. However, a quantitative relationship for the signal response in NS-assisted reactions remains elusive. Existing generalized formalisms are derived for in-vitro applications, raising questions about their direct applicability to in-situ wearable sensors. In this study, we apply the reaction-diffusion theory to establish a generalized physics-guided framework for NS-in-MN platforms in wearable applications. The model relates the signal response to analyte concentration, incorporating geometric, physical, and catalytic platform properties. Approximating the model under NS (binding or catalytic) and environmental (mass transport) limitations, we validate it against numerical simulations and various experimental results from diverse conditions - analyte sensing (glucose, lactic acid, pyocyanin, miRNA, etc.) in artificial and in-vivo environments (humans, mice, pigs, plants, etc.) through electrochemical and optical/colorimetric, enzymatic and non-enzymatic platforms. The results plotted in the scaled response show that (a) NS-limited platforms exhibit a linear dependence, (b) Mass transport-limited platforms saturate to 1, (c) a one-to-one mapping against traditional sensitivity plots unifies the scattered data points reported in literature. The universality of the model provides insightful perspectives for the design and optimization of MN-based sensing technologies, with potential extensions to dissolvable MNs as part of analyte-responsive closed-loop therapeutic applications.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Humanos , Animais , Suínos , Camundongos , Técnicas Biossensoriais/métodos , Nanoestruturas/química , Sistemas de Liberação de Medicamentos/métodos
5.
Biophys Chem ; 309: 107231, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38569455

RESUMO

Nanodisc technology is increasingly being used in structural, biochemical and biophysical studies of membrane proteins. The computational approaches have revealed many important features of nanodisc assembly, structures and dynamics. Therefore, we reviewed the application of computational approaches, especially molecular modeling and molecular dyncamics (MD) simulations, to characterize nanodiscs, including the structural models, assembly and disassembly, protocols for modeling, structural properties and dynamics, and protein-lipid interactions in nanodiscs. More amazing computational studies about nanodiscs are looked forward to in the future.


Assuntos
Nanoestruturas , Nanoestruturas/química , Bicamadas Lipídicas/química , Proteínas de Membrana/química , Modelos Moleculares
6.
Part Fibre Toxicol ; 21(1): 18, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566142

RESUMO

Micro- and nanoplastic particles (MNP) are omnipresent as either pollution or intentionally used in consumer products, released from packaging or even food. There is an exponential increase in the production of plastics. With the realization of bioaccumulation in humans, toxicity research is quickly expanding. There is a rapid increase in the number of papers published on the potential implications of exposure to MNP which necessitates a call for quality criteria to be applied when doing the research. At present, most papers on MNP describe the effects of commercially available polymer (mostly polystyrene) beads that are typically not the MNP of greatest concern. This is not a fault of the research community, necessarily, as the MNPs to which humans are exposed are usually not available in the quantities needed for toxicological research and innovations are needed to supply environmentally-relevant MNP models. In addition, like we have learned from decades of research with particulate matter and engineered nanomaterials, sample physicochemical characteristics and preparation can have major impacts on the biological responses and interpretation of the research findings. Lastly, MNP dosimetry may pose challenges as (1) we are seeing early evidence that plastics are already in the human body at quite high levels that may be difficult to achieve in acute in vitro studies and (2) plastics are already in the diets fed to preclinical models. This commentary highlights the pitfalls and recommendations for particle and fibre toxicologists that should be considered when performing and disseminating the research.


Assuntos
Microplásticos , Nanoestruturas , Humanos , Microplásticos/toxicidade , Plásticos/toxicidade , Poliestirenos , Material Particulado/toxicidade
7.
Mikrochim Acta ; 191(5): 282, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652326

RESUMO

A novel dual-mode fluorometric and colorimetric sensing platform is reported for determining glutathione S-transferase (GST) by utilizing polyethyleneimine-capped silver nanoclusters (PEI-AgNCs) and cobalt-manganese oxide nanosheets (CoMn-ONSs) with oxidase-like activity. Abundant active oxygen species (O2•-) can be produced through the CoMn-ONSs interacting with dissolved oxygen. Afterward, the pink oxDPD was generated through the oxidation of colorless N,N-diethyl-p-phenylenediamine (DPD) by O2•-, and two absorption peaks at 510 and 551 nm could be observed. Simultaneously, oxDPD could quench the fluorescence of PEI-AgNCs at 504 nm via the inner filter effect (IFE). However, in the presence of glutathione (GSH), GSH prevents the oxidation of DPD due to the reducibility of GSH, leading to the absorbance decrease at 510 and 551 nm. Furthermore, the fluorescence at 504 nm was restored due to the quenching effect of oxDPD on decreased PEI-AgNCs. Under the catalysis of GST, GSH and1-chloro-2,4-dinitrobenzo (CDNB) conjugate to generate an adduct, initiating the occurrence of the oxidation of the chromogenic substrate DPD, thereby inducing a distinct colorimetric response again and the significant quenching of PEI-AgNCs. The detection limits for GST determination were 0.04 and 0.21 U/L for fluorometric and colorimetric modes, respectively. The sensing platform illustrated reliable applicability in detecting GST in real samples.


Assuntos
Cobalto , Colorimetria , Glutationa Transferase , Compostos de Manganês , Nanopartículas Metálicas , Óxidos , Polietilenoimina , Prata , Polietilenoimina/química , Prata/química , Cobalto/química , Óxidos/química , Compostos de Manganês/química , Nanopartículas Metálicas/química , Colorimetria/métodos , Glutationa Transferase/metabolismo , Glutationa Transferase/química , Limite de Detecção , Oxirredutases/química , Oxirredutases/metabolismo , Humanos , Glutationa/química , Oxirredução , Técnicas Biossensoriais/métodos , Fenilenodiaminas/química , Nanoestruturas/química
8.
Luminescence ; 39(4): e4745, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38644416

RESUMO

This study introduces a novel chemiluminescence (CL) approach utilizing FeS2 nanosheets (NSs) catalyzed luminol-O2 CL reaction for the measurement of three pharmaceuticals, namely venlafaxine hydrochloride (VFX), imipramine hydrochloride (IPM), and cefazolin sodium (CEF). The CL method involved the phenomenon of quenching induced by the pharmaceuticals in the CL reaction. To achieve the most quenching efficacy of the pharmaceuticals in the CL reaction, the concentrations of reactants comprising luminol, NaOH, and FeS2 NSs were optimized accordingly. The calibration curves demonstrated exceptional linearity within the concentration range spanning from 4.00 × 10-7 to 1.00 × 10-3 mol L-1, 1.00 × 10-7 to 1.00 × 10-4 mol L-1, and 4.00 × 10-6 to 2.00 × 10-4 mol L-1 with detection limits (3σ) of 3.54 × 10-7, 1.08 × 10-8, and 2.63 × 10-6 mol L-1 for VFX, IPM, and CEF, respectively. This study synthesized FeS2 NSs using a facile hydrothermal approach, and then the synthesized FeS2 NSs were subjected to a comprehensive characterization using a range of spectroscopic methods. The proposed CL method was effective in measuring the aforementioned pharmaceuticals in pharmaceutical formulations as well as different water samples. The mechanism of the CL system has been elucidated.


Assuntos
Cefazolina , Compostos Ferrosos , Imipramina , Medições Luminescentes , Luminol , Cloridrato de Venlafaxina , Cefazolina/análise , Cefazolina/química , Cloridrato de Venlafaxina/análise , Cloridrato de Venlafaxina/química , Imipramina/análise , Imipramina/química , Medições Luminescentes/métodos , Luminol/química , Nanoestruturas/química , Luminescência
9.
Molecules ; 29(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38611742

RESUMO

Tumor vaccines have been considered a promising therapeutic approach for treating cancer in recent years. With the development of sequencing technologies, tumor vaccines based on neoantigens or genomes specifically expressed in tumor cells, mainly in the form of peptides, nucleic acids, and dendritic cells, are beginning to receive widespread attention. Therefore, in this review, we have introduced different forms of neoantigen vaccines and discussed the development of these vaccines in treating cancer. Furthermore, neoantigen vaccines are influenced by factors such as antigen stability, weak immunogenicity, and biosafety in addition to sequencing technology. Hence, the biological nanomaterials, polymeric nanomaterials, inorganic nanomaterials, etc., used as vaccine carriers are principally summarized here, which may contribute to the design of neoantigen vaccines for improved stability and better efficacy.


Assuntos
Vacinas Anticâncer , Nanoestruturas , Neoplasias , Ácidos Nucleicos , Humanos , Vacinas Anticâncer/uso terapêutico , Medicina de Precisão , Nanoestruturas/uso terapêutico , Neoplasias/terapia
10.
Molecules ; 29(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38611895

RESUMO

There is a pressing need for efficacious therapies in the field of respiratory diseases and infections. Lipid nanocarriers, administered through aerosols, represent a promising tool for maximizing therapeutic concentration in targeted cells and minimizing systemic exposure. However, this approach requires the application of efficient and safe nanomaterials. Palmitoylethanolamide (PEA), an endocannabinoid-like endogenous lipid, plays a crucial role in providing protective mechanisms during inflammation, making it an interesting material for preparing inhalable lipid nanoparticles (LNPs). This report aims to preliminarily explore the in vitro behavior of LNPs prepared with PEA (PEA-LNPs), a new inhalable inflammatory-targeted nanoparticulate drug carrier. PEA-LNPs exhibited a size of about 250 nm, a rounded shape, and an marked improvement in PEA solubility in comparison to naked PEA, indicative of easily disassembled nanoparticles. A twin glass impinger instrument was used to screen the aerosol performance of PEA-LNP powders, obtained via freeze-drying in the presence of two quantities of mannose as a cryoprotectant. Results indicated that a higher amount of mannose improved the emitted dose (ED), and in particular, the fine particle fraction (FPF). A cytotoxicity assay was performed and indicated that PEA-LNPs are not toxic towards the MH-S alveolar macrophage cell line up to concentrations of 0.64 mg/mL, and using coumarin-6 labelled particles, a rapid internalization into the macrophage was confirmed. This study demonstrates that PEA could represent a suitable material for preparing inhalable lipid nanocarrier-based dry powders, which signify a promising tool for the transport of drugs employed to treat respiratory diseases and infections.


Assuntos
Nanoestruturas , Doenças Respiratórias , Humanos , Manose , Sistemas de Liberação de Medicamentos , Endocanabinoides
11.
Molecules ; 29(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38611919

RESUMO

The administration of magnetic resonance imaging (MRI) contrast agents (CAs) has been conducted since 1988 by clinicians to enhance the clarity and interpretability of MR images. CAs based on gadolinium chelates are the clinical standard used worldwide for the diagnosis of various pathologies, such as the detection of brain lesions, the visualization of blood vessels, and the assessment of soft tissue disorders. However, due to ongoing concerns associated with the safety of gadolinium-based contrast agents, considerable efforts have been directed towards developing contrast agents with better relaxivities, reduced toxicity, and eventually combined therapeutic modalities. In this context, grafting (or encapsulating) paramagnetic metals or chelates onto (within) carbon-based nanoparticles is a straightforward approach enabling the production of contrast agents with high relaxivities while providing extensive tuneability regarding the functionalization of the nanoparticles. Here, we provide an overview of the parameters defining the efficacy of lanthanide-based contrast agents and the subsequent developments in the field of nanoparticular-based contrast agents incorporating paramagnetic species.


Assuntos
Meios de Contraste , Nanoestruturas , Gadolínio , Carbono , Quelantes , Imageamento por Ressonância Magnética
12.
Int J Mol Sci ; 25(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38612829

RESUMO

With the pronounced increase in nanotechnology, it is likely that biological systems will be exposed to excess nanoparticles (NPs). Cerium oxide nanoparticles (CeO2 NPs) are among the most abundantly produced nanomaterials in the world. Their widespread use raises fundamental questions related to the accumulation in the environment and further interactions with living organisms, especially plants. NPs present in either soil or soilless environments are absorbed by the plant root systems and further transported to the aboveground parts. After entering the cytoplasm, NPs interact with chloroplast, nucleus, and other structures responsible for metabolic processes at the cellular level. In recent years, several studies have shown the impact of nanoceria on plant growth and metabolic processes. Research performed on different plants has shown a dual role for CeO2 NPs. The observed effects can be positive or negative and strongly depend on the plant species, characterization, and concentrations of NPs. This review describes the impact of root-applied CeO2 NPs on plant growth, photosynthesis, metal homeostasis, and parameters of induced oxidative stress.


Assuntos
Cério , Nanopartículas , Nanoestruturas , Transporte Biológico , Cloroplastos
13.
Biosens Bioelectron ; 256: 116276, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38599073

RESUMO

Fat mass and obesity-associated protein (FTO) has gained attention as the first RNA N6-methyladenosine (m6A) modification eraser due to its overexpression being associated with various cancers. In this study, an electrochemiluminescence (ECL) biosensor for the detection of demethylase FTO was developed based on DNAzyme-mediated CRISPR/Cas12a signal cascade amplification system and carboxylated carbon nitride nanosheets/phosphorus-doped nitrogen-vacancy modified carbon nitride nanosheets (C-CN/PCNV) heterojunction as the emitter. The biosensor was constructed by modifying the C-CN/PCNV heterojunction and a ferrocene-tagged probe (ssDNA-Fc) on a glassy carbon electrode. The presence of FTO removes the m6A modification on the catalytic core of DNAzyme, restoring its cleavage activity and generating activator DNA. This activator DNA further activates the trans-cleavage ability of Cas12a, leading to the cleavage of the ssDNA-Fc and the recovery of the ECL signal. The C-CN/PCNV heterojunction prevents electrode passivation and improves the electron-hole recombination, resulting in significantly enhanced ECL signal. The biosensor demonstrates high sensitivity with a low detection limit of 0.63 pM in the range from 1.0 pM to 100 nM. Furthermore, the biosensor was successfully applied to detect FTO in cancer cell lysate and screen FTO inhibitors, showing great potential in early clinical diagnosis and drug discovery.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato , Técnicas Biossensoriais , Sistemas CRISPR-Cas , DNA Catalítico , Técnicas Eletroquímicas , Limite de Detecção , Medições Luminescentes , Metalocenos , Dioxigenase FTO Dependente de alfa-Cetoglutarato/química , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Humanos , DNA Catalítico/química , Técnicas Eletroquímicas/métodos , Nitrilas/química , Endodesoxirribonucleases/química , Endodesoxirribonucleases/metabolismo , Proteínas Associadas a CRISPR/química , Adenosina/análogos & derivados , Adenosina/análise , Adenosina/química , Nanoestruturas/química , Compostos Ferrosos/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética
14.
Cells ; 13(7)2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38607007

RESUMO

Solid tumors, with their intricate cellular architecture and genetic heterogeneity, have long posed therapeutic challenges. The advent of the CRISPR genome editing system offers a promising, precise genetic intervention. However, the journey from bench to bedside is fraught with hurdles, chief among them being the efficient delivery of CRISPR components to tumor cells. Lipid nanoparticles (LNPs) have emerged as a potential solution. This biocompatible nanomaterial can encapsulate the CRISPR/Cas9 system, ensuring targeted delivery while mitigating off-target effects. Pre-clinical investigations underscore the efficacy of LNP-mediated CRISPR delivery, with marked disruption of oncogenic pathways and subsequent tumor regression. Overall, CRISPR/Cas9 technology, when combined with LNPs, presents a groundbreaking approach to cancer therapy, offering precision, efficacy, and potential solutions to current limitations. While further research and clinical testing are required, the future of personalized cancer treatment based on CRISPR/Cas9 holds immense promise.


Assuntos
Nanoestruturas , Neoplasias , Humanos , Sistemas CRISPR-Cas/genética , Edição de Genes , Terapia Genética , Neoplasias/genética , Neoplasias/terapia
15.
J Nanobiotechnology ; 22(1): 185, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627717

RESUMO

Rare earth nanomaterials (RE NMs), which are based on rare earth elements, have emerged as remarkable biomaterials for use in bone regeneration. The effects of RE NMs on osteogenesis, such as promoting the osteogenic differentiation of mesenchymal stem cells, have been investigated. However, the contributions of the properties of RE NMs to bone regeneration and their interactions with various cell types during osteogenesis have not been reviewed. Here, we review the crucial roles of the physicochemical and biological properties of RE NMs and focus on their osteogenic mechanisms. RE NMs directly promote the proliferation, adhesion, migration, and osteogenic differentiation of mesenchymal stem cells. They also increase collagen secretion and mineralization to accelerate osteogenesis. Furthermore, RE NMs inhibit osteoclast formation and regulate the immune environment by modulating macrophages and promote angiogenesis by inducing hypoxia in endothelial cells. These effects create a microenvironment that is conducive to bone formation. This review will help researchers overcome current limitations to take full advantage of the osteogenic benefits of RE NMs and will suggest a potential approach for further osteogenesis research.


Assuntos
Nanoestruturas , Osteogênese , Células Endoteliais , Regeneração Óssea , Osteoclastos/metabolismo , Diferenciação Celular
16.
Anal Methods ; 16(16): 2424-2443, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38592715

RESUMO

This review summarizes recent developments in amperometric biosensors, based on one-step electrodeposited organic-inorganic hybrid layers, used for analysis of low molecular weight compounds. The factors affecting self-assembly of one-step electrodeposited films, methods for verifying their composition, advantages, limitations and approaches affecting the electroanalytical performance of amperometric biosensors based on organic-inorganic hybrid layers were systemized. Moreover, issues related to the formation of one-step organic-inorganic hybrid functional layers with different structures in biosensors produced under the same electrodeposition parameters are discussed. The systemized dependencies can support the preliminary choice of functional sensing layers with architectures tuned for specific biotechnology and life science applications. Finally, the capabilities of one-step electrodeposition of organic-inorganic hybrid functional films beyond amperometric biosensors were highlighted.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Galvanoplastia/métodos , Nanoestruturas/química , Eletrodos
17.
Chem Commun (Camb) ; 60(35): 4715-4718, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38596907

RESUMO

Chemically conjugated branched DNA was successfully synthesized by a copper-free click reaction to construct sophisticated and higher-order polyhedral DNA nanostructures with pre-defined units in one pot, which can be used as an efficient nanoplatform to precisely organize multiple gold nanoparticles in predesigned patterns.


Assuntos
DNA , Ouro , Nanopartículas Metálicas , Nanoestruturas , DNA/química , Ouro/química , Nanoestruturas/química , Nanopartículas Metálicas/química , Química Click , Tamanho da Partícula
18.
Nanoscale ; 16(16): 7874-7883, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38563323

RESUMO

Anisotropic gold (Au) nanostructures have been widely explored for various nanomedicine applications. While these nanomaterials have shown great promise for disease theranostics, particularly for cancer diagnosis and treatment, the utilization and clinical translation of anisotropic Au nanostructures have been limited by their high phagocytic uptake and clearance and low cancer targeting specificity. Numerous efforts have thus been made toward mitigating these challenges. Many conventional strategies, however, rely on all-synthetic materials, involve complex chemical processes, or have low product throughput and reproducibility. Herein, by integrating cell membrane coating and microfluidic technologies, a high-throughput bioinspired approach for synthesizing biomimetic anisotropic Au nanostructures with minimized phagocytic uptake and improved cancer cell targeting is reported. Through continuous hydrodynamic flow focusing, mixing, and sonication, Au nanostructures are encapsulated within the macrophage and cancer cell membrane vesicles effectively. The fabricated nanostructures are uniform and highly stable in serum. Importantly, the macrophage membrane vesicle-encapsulated Au nanostructures can be preferentially internalized by breast cancer cells, but not by macrophages. Overall, this study has demonstrated the feasibility of employing an integrated microfluidic-sonication technique to formulate uniform and highly stable biomimetic anisotropic nanostructures for enhanced cancer theranostic applications.


Assuntos
Membrana Celular , Ouro , Ouro/química , Humanos , Anisotropia , Membrana Celular/metabolismo , Membrana Celular/química , Animais , Camundongos , Macrófagos/metabolismo , Macrófagos/citologia , Nanopartículas Metálicas/química , Células RAW 264.7 , Linhagem Celular Tumoral , Nanoestruturas/química , Células MCF-7
19.
ACS Appl Mater Interfaces ; 16(15): 18268-18284, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38564419

RESUMO

The essential amino acid histidine plays a central role in the manifestation of several metabolic processes, including protein synthesis, enzyme-catalysis, and key biomolecular interactions. However, excess accumulation of histidine causes histidinemia, which shows brain-related medical complications, and the molecular mechanism of such histidine-linked complications is largely unknown. Here, we show that histidine undergoes a self-assembly process, leading to the formation of amyloid-like cytotoxic and catalytically active nanofibers. The kinetics of histidine self-assembly was favored in the presence of Mg(II) and Co(II) ions. Molecular dynamics data showed that preferential noncovalent interactions dominated by H-bonds between histidine molecules facilitate the formation of histidine nanofibers. The histidine nanofibers induced amyloid cross-seeding reactions in several proteins and peptides including pathogenic Aß1-42 and brain extract components. Further, the histidine nanofibers exhibited oxidase activity and enhanced the oxidation of neurotransmitters. Cell-based studies confirmed the cellular internalization of histidine nanofibers in SH-SY5Y cells and subsequent cytotoxic effects through necrosis and apoptosis-mediated cell death. Since several complications including behavioral abnormality, developmental delay, and neurological disabilities are directly linked to abnormal accumulation of histidine, our findings provide a foundational understanding of the mechanism of histidine-related complications. Further, the ability of histidine nanofibers to catalyze amyloid seeding and oxidation reactions is equally important for both biological and materials science research.


Assuntos
Nanofibras , Nanoestruturas , Neuroblastoma , Humanos , Histidina , Peptídeos/química , Nanofibras/química , Amiloide/química , Peptídeos beta-Amiloides/química
20.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38612784

RESUMO

Hyaluronic acid (HA) is a linear, anionic, non-sulfated glycosaminoglycan occurring in almost all body tissues and fluids of vertebrates including humans. It is a main component of the extracellular matrix and, thanks to its high water-holding capacity, plays a major role in tissue hydration and osmotic pressure maintenance, but it is also involved in cell proliferation, differentiation and migration, inflammation, immunomodulation, and angiogenesis. Based on multiple physiological effects on tissue repair and reconstruction processes, HA has found extensive application in regenerative medicine. In recent years, nanotechnological research has been applied to HA in order to improve its regenerative potential, developing nanomedical formulations containing HA as the main component of multifunctional hydrogels systems, or as core component or coating/functionalizing element of nanoconstructs. This review offers an overview of the various uses of HA in regenerative medicine aimed at designing innovative nanostructured devices to be applied in various fields such as orthopedics, dermatology, and neurology.


Assuntos
Ácido Hialurônico , Nanoestruturas , Humanos , Animais , Medicina Regenerativa , Nanotecnologia , Inflamação , Nanoestruturas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...